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Limited data on the spatial, environmental, and human dimensions of small-scale
fisheries hinder conservation planning, so the incorporation of fishers' local ecolog-
ical knowledge may be a valuable way to fill data gaps while legitimizing manage-
ment decisions. In Peru, vulnerable and poorly assessed juvenile smooth
hammerhead sharks (Sphyrna zygaena) are the most commonly caught shark spe-
cies in a small-scale drift gillnet fishery. We conducted semistructured interviews
with 87 hammerhead fishers in three major Peruvian ports to elucidate the spatio-
temporal niche of the hammerhead fishery and environmental drivers of juvenile
hammerhead catch. We also built a biophysical model of hammerhead distribution
that correlated remotely sensed environmental variables with a spatially explicit
fishery observer dataset. Overall, we found a consensus between fishers' knowl-
edge and species distribution modeling. Sea surface temperature and chlorophyll-a
emerged as important environmental drivers of juvenile hammerhead catch, with
both fishers' knowledge and the biophysical model identifying similar habitat pref-
erences (~20–23�C and log chl-a >−1.6 mg/m3). Participatory mapping of fishing
grounds also corresponded to the spatiotemporal patterns of predicted hammerhead
distribution. This study points to the utility of combining fishers' knowledge and
biophysical modeling for spatial, temporal, and/or dynamic management of these
sharks in Peru and in other data-poor fisheries globally.
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1 | INTRODUCTION

Shark species, considered the most threatened marine verte-
brate taxa globally (Dulvy, Carlson, et al., 2014), are also
among the most data deficient (Hoffmann et al., 2018). In
particular, limited data regarding exploitation in small-scale
fisheries represents a challenge to conserving shark species

worldwide (Worm et al., 2013). In Peru, sharks are targeted
for human consumption and comprise approximately one
third of small-scale fisheries landings (Gonzalez-Pestana,
Kouri, & Velez-Zuazo, 2014). High catch of juvenile smooth
hammerhead sharks (Sphyrna zygaena), in particular, pre-
sents a conservation concern. Evaluated as vulnerable by the
International Union for the Conservation of Nature (IUCN),
smooth hammerheads are poorly assessed and lack data on
their distribution and life history (Simpfendorfer, 2005),
especially for the eastern Pacific. Smooth hammerheads are

Combining biophysical models and fishers’ local ecological knowledge
holds promise for conservation planning in data-poor fisheries.
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the third most commonly caught shark species in Peru and
the most commonly caught in the drift gillnet fishery that
operates out of northern ports (Figure 1a) (Gonzalez-Pestana
et al., 2014), with total annual landings of approximately
500 tons (de la Puente Jeri, 2013). While legally defined as
“small-scale” based on vessel size and operation with man-
ual labor, these fisheries operate on a scale comparable to
industrial fisheries, with over 100,000 km of nets in the
water annually and fishing trips lasting up to 3 weeks
(Alfaro-Shigueto et al., 2010). Nearly 18,000 small-scale
vessels reportedly operate along the 2,400 km coast,
employing over 67,000 fishers (Guevara-Carrasco & Ber-
trand, 2017).

Landings of smooth hammerheads in Peru are almost
entirely juveniles (Figure 1b), theorized to be due to overlap
between fishing grounds and coastal nursery areas
(Castañeda, 2001; Gonzalez-Pestana, 2014). Seasonal pat-
terns in official landings data (Figure 1c) suggest that female
sharks approach coastal areas for parturition in the early aus-
tral summer (November and December), and juveniles
aggregate along the coast for several months before migrat-
ing out for an oceanic adulthood (Compagno, 1984; Simp-
fendorfer, 2005). These landings data do not precisely reflect
where sharks are caught given fishers' highly mobile behav-
ior, but currently inform management decisions, including a
seasonal fishing ban implemented in 2016 to protect juvenile
hammerheads (IMARPE, 2014; PRODUCE, 2016) follow-
ing the 2013 listing of three hammerhead species under
Appendix II of the Convention on the International Trade of

Endangered Species (CITES). Better understanding of the
distribution and environmental niche of juvenile hammer-
head sharks would contribute to regional knowledge of this
species and inform fisheries management.

Species distribution models, which correlate documented
presences and, if available, absences of species with environ-
mental predictor variables, have been suggested as a valu-
able tool for conservation decision-making (Guisan et al.,
2013). For smooth hammerheads in Peru, identifying envi-
ronmental characteristics of nursery areas and spatial zones
of high catch might inform management at finer spatial
and/or temporal scales than landings data. However, species
distribution models are data-intensive, especially when inte-
grating multiple models as ensembles as is sometimes
recommended (Araújo & New, 2007; Scales et al., 2017).
The costs of collecting spatially explicit species data may be
prohibitive for poorly studied species in remote areas.

One potential solution is incorporating local ecological
knowledge throughout the planning process (Anadón, Gimé-
nez, Ballestar, & Pérez, 2009; Bélisle, Asselin, Leblanc, &
Gauthier, 2018; Folke, 2004). In addition to filling data
gaps, incorporating local knowledge in ecological models
can legitimize management decisions and empower commu-
nities in resource management (Bélisle et al., 2018). Local
ecological knowledge has been variously defined (Davis &
Ruddle, 2010); here we take the more experiential version of
“place-based empirical knowledge” (Bélisle et al., 2018).
Increasingly called for in fisheries research and management,
fishers' local ecological knowledge has been used to extend

(a)
(b)

(c)

FIGURE 1 (a) Location of 1,644 gillnet sets with hammerheads present (circles) and 2,207 gillnet sets with hammerheads absent (plusses) used to build the
generalized additive model. Interview locations are indicated, and sets from the corresponding points shaded accordingly (darkest points indicate sets from
ports not interviewed). Dashed line indicates fishing grounds defined by a 2� buffer around all presence and absence points. (b) Distribution of fork length of
9,086 observed smooth hammerheads in gillnet sets between 2004 and 2016. Dashed line indicates estimated size at maturity. (c) Recorded mean monthly
landings (tons) recorded of smooth hammerhead sharks from January 1997, when Peru started recording disaggregated shark species landings, until
September 2013 (Adapted from de la Puente Jeri, 2013)
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scientific time-series, refine stock assessments, design
marine protected areas, and provide valuable social insight
for informing management (Aswani, 2018; Hind, 2014;
Johannes, Freeman, & Hamilton, 2000; Neis, 1992; Sáenz-
Arroyo, Roberts, Torre, Cariño-Olvera, & Enríquez-
Andrade, 2005). Ecological modeling and studies of fishers'
knowledge often examine similar spatial questions, yet
rarely are the results compared or integrated. While a few
studies have incorporated local knowledge with ecological
models, applications to marine environments and fisheries
are limited (Bélisle et al., 2018; Grant & Berkes, 2007;
Zhang & Vincent, 2017). In particular, studies with both
spatially explicit biophysical models and fishers' ecological
knowledge have not been conducted for fisheries applica-
tions. Examining fishers' knowledge alongside ecological
models could be a valuable way to understand and manage
data-poor small-scale fisheries, and holds potential for elas-
mobranch conservation globally.

Peru's hammerhead shark fishery provides a unique
opportunity to incorporate fishers' knowledge with a spa-
tially explicit onboard observer dataset spanning over a
decade. Collected by trained observers at a Peruvian conser-
vation nonprofit, these may be the only spatially explicit data
on this species for this region. Furthermore, the high mobil-
ity and broad spatial scale of this fishery make the coarse
spatiotemporal resolution of local knowledge studies more
appropriate (Zhang & Vincent, 2017). The goal of our study
is to examine the distribution of juvenile smooth hammer-
head shark habitat along the Peruvian coast. We use two
approaches: a statistical biophysical model and semistruc-
tured interviews eliciting fishers' ecological knowledge.

2 | METHODS

2.1 | Fisheries data

Onboard fishery observers recorded drift gillnet catch com-
position and fishing location from 2000 to 2016 across 13�

of latitude (16.53�–3.37�S). Observers used Global Position-
ing System (GPS) devices to record the location of each net
set at the onset of net deploy, end of net deploy, start of net
retrieval, and end of net retrieval; we used the coordinates at
the onset of net deploy in this study. Observers also recorded
the main objective species for each fishing trip, port of
departure and entry, and net dimensions. Observers identi-
fied animals to the species level with onboard guides and,
conditions permitting, recorded sex, maturity (clasper state),
and length (fork length or total length) of elasmobranchs.
Observers more frequently recorded fork length than total
length, so we converted all lengths to fork lengths (cm) with
the conversion total length/1.28 for males and (total length +
0.616)/2.18 for females, which was derived from larger
hammerheads (>1 m) in the Atlantic Ocean (Mas, Forsel-
ledo, & Domingo, 2014). Fork length at maturity is

151.33 cm for males and 156.73 cm for females based on
estimates for smooth hammerheads in the Gulf of California
(Nava & Márquez-Farías, 2014). We classified each net set
by the presence or absence of juvenile hammerhead sharks.
We omitted any sets for which latitude, longitude, or date
data were missing, and sets from 38 trips for which
observers did not measure hammerheads in any sets but
reported hammerhead capture for the trip.

2.2 | Biophysical model

To determine juvenile hammerhead shark distribution and
probability of presence, we built generalized additive models
(GAMs) with a binomial distribution with the package mgcv
(version 1.8.22) in R (version 3.4.2). We tested 17 predictor
variables based on previously published studies of juvenile
shark habitat (Alfaro-Shigueto, 2014; Campos, 2014;
Cartamil et al., 2010; Oh, Sequeira, Meekan, Ruppert, &
Meeuwig, 2017). These predictors included spatial variables:
latitude, longitude, distance to coast (m), distance to pro-
tected coastal islands (m), distance to river mouths
(m) (distances calculated with the R package geosphere ver-
sion 1.5.7), and depth (m; from GEBCO bathymetry data);
temporal variables as factors: year and month; variables
regarding fishing behavior: port of departure (n = 13),
whether the trip explicitly targeted sharks (binomial yes or
no), and net mesh size (cm); satellite-derived environmental
variables downloaded from Southwest Fisheries Science
Center Environmental Research Division's ERDDAP
(Simons, 2017): log-transformed chlorophyll-a concentration
(chl-a, mg/m3, 8 day composites from SeaWifs, MODIS,
and VIIRS), sea surface temperature (SST) mean and SD
(�C, from Pathfinder, MUR, and GHRSST); and mesoscale
environmental variables downloaded from Aviso+ and the
Copernicus Marine Environment Monitoring Service: sea
level anomaly (SLA, m), finite-size Lyapunov exponents
(FSLE, per day), and FSLE direction (theta, �). Log chl-a
outliers less than −10 mg/m3 were removed. We used a cor-
relogram correlation matrix to evaluate collinearity between
variables and in cases where correlation >0.6 we built
models for each correlated variable and dropped the variable
that yielded a poorer Akaike's Information Criterion (AIC).

Following exploratory tests, we considered five candi-
date models: all uncorrelated variables, only static variables,
static and broad scale dynamic variables, static and meso-
scale dynamic variables, and only dynamic variables (model
details in Table S2). We selected the final model based on
percent deviance explained and AIC, as well as area under
curve (AUC) (Delong, Delong, & Clarke-Pearson, 1988),
and true skill statistic (TSS) (Allouche, Tsoar, & Kadmon,
2006) performance metrics with the R package ROCR (ver-
sion 1.0.7). For AUC and TSS we took the average of five
model iterations, with iterations trained on a random 75%
subset of the data and tested with the remaining 25%. We
evaluated the contribution of each individual variable to the

MASON ET AL. 3 of 10



best model by fitting models with each single explanatory
variable, and then fitting the best model with each individual
variable removed (Friedlaender et al., 2016), and comparing
AIC values and percent deviance explained. We tested for
spatial autocorrelation in model residuals with Moran's
I statistics with R packages ncf (version 1.2.5) and spdep
(version 0.7.8) (Dormann et al., 2007).

We used the final best model to predict hammerhead
shark presence likelihood, which we used as a measure of
habitat suitability, off the Peruvian coast. We predicted on
environmental data from 2012, an example year which was
an El Niño-Southern Oscillation “neutral” year, in the
months respondents identified as the hammerhead fishing
season (December–April). We interpolated all covariates to
a 0.25� grid to match the resolution at which SLA was
available.

2.3 | Interviews

We conducted 87 semistructured interviews between
February 8 and March 11, 2018 in the three ports with the
largest drift-gillnet fleets: San José (n = 32; 109 total ves-
sels), Salaverry (n = 26; 70 total vessels), and Máncora
(n = 29; 55 total vessels) (Alfaro-Shigueto, 2014)
(Figure 1a). We specifically interviewed drift-gillnet captains
or boat owners as experts who make decisions about where
and when to fish; sampling was opportunistic and based on
fishers' availability. Two of our respondents were not cur-
rently active gillnetters, and it is possible that some inter-
views were with the captains and owners of the same vessel,
so our samples were not exact proportions of Alfaro-Shigue-
to's (2014) above estimates of vessel numbers. Interviews
were conducted in Spanish and translated into English prior
to analysis. The interview protocol was approved by Stan-
ford University's Institutional Review Board for human sub-
jects research on January 11, 2018, protocol #44763.

The interviewer first asked respondents demographic
questions about their fishing experience and methods,
including which months they most fish for hammerheads.
The interviewer then conducted a participatory mapping
exercise to characterize the spatial extent of juvenile ham-
merhead fishing grounds. This was done by asking respon-
dents to draw on a printed map where they catch
hammerheads. The map was labeled with a longitude and
latitude grid at the degree scale, the names of major ports,
coastal islands, and the 250 m isobath representing the conti-
nental shelf (see Figure S1, for example maps). Most fishers
were familiar with maps and coordinates, but if they seemed
unfamiliar the interviewer oriented them to the coast, their
home port, and the islands.

The interviewer also asked a series of questions to char-
acterize fishers' environmental niche. Respondents were first
asked, “When you're fishing, what do you look for to know
if there are hammerheads?” If needed, the interviewer clari-
fied with the terms “indicators,” “evidence,” or “how do you

know if hammerheads are in the water?” After recording
responses to this open question, the interviewer asked specif-
ically about environmental cues corresponding to variables
used in the biophysical model including temperature, color
of the water, currents or waves, distance from the coast, and
distance from coastal islands if the respondent had not
mentioned them.

2.4 | Interview analysis

We digitized and georeferenced participatory maps in ArcGIS
ArcMap following Wahle and D'Iorio (2010) and Levine and
Feinholz (2015). We categorized the polygons that respon-
dents had indicated as their hammerhead fishing grounds
based on which fishing months the respondent had specified
and collated all responses onto the same 0.25� grid for each
month (matching the biophysical model prediction grid),
where any part of a polygon intersecting a grid cell marked a
count. To characterize the environmental profile of these indi-
cated fishing grounds, we overlaid the participatory grids with
the same monthly biophysical predictor rasters, selecting only
temperature and chl-a as they emerged as important in the
interviews. From these rasters, we extracted environmental
values, weighted by the number of polygons intersecting each
grid cell. We hereafter refer to these distributions of values as
the “fisher-mapped” hammerhead habitat.

We coded the interviews for emergent themes in NVivo
(QSR International, version 12) and extracted any quantitative
environmental information, hereafter referred to as the “fisher-
stated” hammerhead habitat. Only unprompted responses were
used to characterize general patterns in hammerhead fishing
behavior, while prompted responses were also included for
subsequent qualitative and quantitative analysis of specific
environmental cues. One such cue was temperature, for which
we examined the distribution of fisher-stated temperature pref-
erences from both prompted and unprompted responses. We
categorized the distribution into quantiles: we classified “opti-
mal” habitat as the mean reported temperature ± 0.5�, second
most optimal as between the 0.25 or 0.75 quantiles and opti-
mal temperature, and <0.25 or >0.75 quantiles as least opti-
mal. We interpreted responses about color of water as
pertaining to chl-a concentration, as measures of turbidity or
other processes that may affect water color were less readily
available. We used a cutoff of 0.2 chl-a (mg/m3), or approxi-
mately −1.6 log chl-a (mg/m3), which has been used to delin-
eate oligotrophic from productive water masses in the north
Pacific Ocean (Polovina, Howell, Kobayashi, & Seki, 2001)
to differentiate between “blue” (i.e., clear) and “green”
(i.e., colored, turbid) water.

2.5 | Biophysical model and interview comparisons

We employed two approaches to compare hammerhead
shark habitat suitability between the biophysical model pre-
dictions and the fishers' knowledge. First, we qualitatively
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compared the spatial extent of hammerhead habitat from the
biophysical model predictions, fisher-stated habitat, and par-
ticipatory maps. To visualize fisher-stated habitat spatially,
we classified the same monthly rasters used in the biophysi-
cal model prediction according to the optimal categories and
cutoffs described above. Second, we compared the environ-
mental profiles of predicted hammerhead habitat from the
different methods. To compare biophysical model predic-
tions and the fisher-mapped environmental variables, we
extracted environmental values from the same cells where
model predicted hammerhead suitability values were >0.5.
We also determined the “background” environmental profile
for each month for the overall fishing grounds, defined as a
polygon surrounding all observed set nets with a 2� buffer
(Figure 1a). We compared the density distributions of
model-derived and fisher-mapped variables with biophysical
model partial plot response curves and fisher-stated variables
where applicable. We performed both these comparisons for
each month in the peak fishing season (December–April) as
well as for an aggregate over the peak season. In the spirit of
epistemological pluralism (Miller et al., 2008), we present
results from the biophysical model and the interviews side
by side rather than use one method as the standard by which
to evaluate the other.

3 | RESULTS

3.1 | Fisheries data

A total of 3,851 net sets from 125 boats and 13 ports were
used to build the biophysical models, which included 1,644
juvenile hammerhead presences and 2,207 absences
(Figure 1a). Fork lengths of hammerhead sharks caught in
sets (n = 9,086 sharks) ranged between 11 and 274 cm, with
the majority between 50 and 80 cm (Figure 1b). Net sets
were primarily concentrated along the northern Peruvian
coast. The majority of set data came from the port of Sala-
verry (n = 2,101), followed by San José (n = 950), then
Mancora (n = 84). Hammerhead shark landings varied
between months, with the majority of landings occurring
from January to May. However, northern ports (notably
Mancora, 4.10�S) showed peak catches between April and
June (Figure 1c).

3.2 | Biophysical model

The best biophysical model was the full uncorrelated model
containing 12 variables, with 31.9% deviance explained (see
Table S1 for model summary). This model had good predic-
tive performance with an AUC of 0.83 and a TSS of 0.49
(see Table S2 for model selection statistics). This model
included year, month, port of departure, targeting of sharks,
mesh size, distance to islands, log chl-a, SST, SST SD, SLA,
FSLE, and FSLE direction as covariates; with points with

missing environmental data removed, the final model
included 3,212 net sets. We removed latitude and longitude
as covariates because they resulted in extreme values at the
edges of our predictions.

The port of departure and SST emerged as the most
important explanatory variables in terms of lost deviance
explained when dropped from the model, and targeting of
sharks had the most explanatory power when considered
independently (Table 1). The mesoscale variables (SLA and
FSLE) had only a minor effect in describing shark habitat.
Spatial predictions of shark habitat suitability (as measured
by presence likelihood) are closely associated with coastal
temperature and log chl-a distributions (Figure 2a,e). The
SST response curve showed peak predicted habitat between
20 and 22�C (Figure 3c). The log chl-a response curve has
an inflection point approaching 0 at −1.6 mg/m3

(Figure 3d), further supporting our cutoff defining fisher-
stated “green water.” We did not find significant autocorrela-
tion spatial structure in the residuals (Moran's
I statistic = −3.13 × 10−4, standard deviate = −2.13,
p = 0.98), justifying running a model without latitude and
longitude.

3.3 | Interviews

Respondents drew a total of 269 polygons spanning 17.42� of
latitude (0.22�–17.64�S) and 12.80� longitude (76.54�–
89.34�W) (Figure 2b,f). The highest overlap was 24 polygons
in December, January, and February. Based on respondents'
reports of the months they most fish for hammerheads, we
defined the peak fishing season for all ports as December
through April.

Respondents' most common unprompted explanation of
drivers of hammerhead fishing behavior was that fishers cue
to prey aggregations, such as anchovy, which they know

TABLE 1 Contribution of each variable to the best biophysical model
deviance explained with individual variable model (Dev. explained, single),
full—1 model (Dev. explained, drop), and the difference in deviance
explained between the full model and full-1 model (Difference from full)

Variable
Dev. explained,
single

Dev.
explained, drop

Difference
from full

Port 7.45 23.41 −8.52

SST 4.75 23.56 −8.36

Target 8.42 25.33 −6.60

Distance to islands 4.02 25.35 −6.58

Log chl-a 3.29 25.63 −6.30

Year 1.74 25.66 −6.27

SST SD 2.29 26.29 −5.64

FSLE 0.30 26.66 −5.27

SLA 1.09 26.68 −5.25

FSLE direction 0.33 26.68 −5.24

Month 1.36 26.75 −5.17

Mesh size 5.61 27.09 −4.83

Note. FSLE: finite-size Lyapunov exponents; SST: sea surface temperature;
SLA: sea level anomaly.
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attract sharks (30 respondents, 34%). The next most common
unprompted answer had to do with the color of the water:
green, brown, turbid, dark (30%). Eighteen percent of
respondents explained that they share fishing information
via radio communication, including providing specific coor-
dinates, in social networks that may bridge ports. Fifteen
percent described a “trial and error” strategy, emphasizing
that with gillnets, the catch can be a surprise. Including
prompted responses, 74% of respondents use temperature to
fish for hammerheads, usually specifying warmer waters,
and 48% (42) gave a specific degree or range; these specific
responses comprise our fisher-stated hammerhead habitat
temperature distribution (Figure 3a). Ninety percent of
respondents use dark, turbid, or greenish waters to locate
hammerheads (Figure 3b), and two respondents noted a rela-
tionship between warmer and greener water. Some respon-
dents also noted when prompted that hammerheads are
closer to the coast in the summer than in the winter, but in
general did not cue to this distance or the other prompted
variables as much as those described above. In subsequent
results and discussion of fishers' knowledge, we focus on
temperature and chl-a as they were the most commonly
reported environmental drivers of fishing behavior.

3.4 | Biophysical model and interview comparisons

The spatial distributions of fisher-stated environmental vari-
ables, participatory maps, and biophysical model predictions
all follow similar patterns, with highest predicted habitat
close to shore, particularly the coastal waters off San José
(Figure 2). The participatory maps tended to have a smaller

and more northward footprint than the biophysical model
predictions. The fisher-mapped temperature distribution for
the peak fishing season (Figure 3e) had a warmer peak
(mean [SD] = 22.74�C [1.62]) than fisher-stated temperature
(Figure 3a) (mean [SD] = 21.36�C, [2.29]), which showed a
similar pattern to the biophysical model partial plot relation-
ship of SST (Figure 3c) (peak ~20–22�C). The distributions
of SST from the biophysical model prediction (mean [SD] =
22.32�C [1.97]) and fisher-mapped values are more similar
to each other and distinct from the background environmen-
tal signal (mean [SD] = 24.05�C [1.83]) (Figure 3e). The
temperature distributions of biophysical model predictions
tend toward the warmer quantiles of fisher-stated tempera-
ture in later months, with the most overlap in January and
the least in December (Figure S2). During the peak fishing
season, the model prediction and fisher-mapped log chl-a
distributions had similar peaks (model mean [SD] = −0.41
mg/m3 [0.73]; maps mean [SD] = −0.46 mg/m3 [0.62])
higher than background log chl-a (mean [SD] = −1.29
mg/m3 [0.81]) (Figure 3f), again with least overlap in
December (Figure S2).

4 | DISCUSSION

This study is one of the first to assess the complementarity
of fishers' knowledge and biophysical models in describing
catch patterns, lending further credence to the utility of fish-
ers' knowledge for conservation planning in data-poor situa-
tions. The convergence of results across three methods
(biophysical model, fishers' maps, and fishers' descriptions

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 2 Median generalized additive model prediction (GAM) of juvenile hammerhead shark catch (a, e), aggregated participatory map polygons (b, f),
fisher-stated temperature niche (c, g), and fisher-stated ocean color niche (d, h) for January (top row) and April (bottom row), 2012. Habitat suitability in each
map goes from low (dark) to high (bright), measured as 0–1 presence likelihood for GAM predictions, 1–24 overlapping polygons for participatory maps,
three discrete categories based on fisher-stated temperature quantiles (�C, see Figure 3) for sea surface temperature, and −1.6 to 3.0 mg/m3 for log chl-a
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of their environmental niche) is encouraging for bringing
together these different sources of knowledge. The dynamic
nature of juvenile hammerhead shark habitat shown here
suggests that including sea surface temperature and
chlorophyll-a patterns in conservation planning may allow
fishers and conservation practitioners to refine spatiotempo-
ral management approaches for these sharks, with the

potential for incorporating more dynamic approaches
(Alfaro-Shigueto, Mangel, Dutton, Seminoff, & Godley, 2012;
Hazen et al., 2018; Howell, Kobayashi, Parker, Balazs, &
Polovina, 2008).

Both our model and respondents' accounts of how they
use environmental variables emphasized temperature, with
fishers also cuing to color of water, which may refer to a

(a) (b)

(c) (d)

(e) (f)

FIGURE 3 Model and interview comparison of sea surface temperature (a, c, e) and log chlorophyll-a (b, d, f) distributions, including fisher-stated variables
(a, b), biophysical model partial plots (c, d), and density distributions (e, f) of fisher-mapped variables (dashed line), biophysical model prediction values >0.5
(solid line), and background environment (dotted line) for the peak fishing season (December–April) 2012. For fisher-stated temperature (a), vertical dashed
lines indicate quartiles used to categorize “optimal” habitat in Figure 2. For fisher-stated chlorophyll (b), we show the number of respondents that did (yes)
and did not (no) indicate that they use the color of the water to fish hammerheads, with prompted responses in black and unprompted in gray. Vertical dashed
line in (f) indicates −1.6 cutoff representing green water

MASON ET AL. 7 of 10



complex combination of productivity, turbidity, and fronts;
these results are broadly similar to other published studies of
juvenile shark habitat (Cartamil et al., 2010; Oh et al.,
2017). Aggregations of prey fish, which fishers emphasized
in their fishing strategies, are also linked to these productive
oceanographic conditions (Polovina et al., 2001). Mesoscale
covariates, including FSLE and SLA, which are often prox-
ies for productive feeding areas, did not have a large effect
in predicting hammerhead habitat. Similarly, fishers did not
emphasize currents or waves in their environmental
responses. These mesoscale covariates may not be effective
predictors for juvenile sharks within their nursery grounds,
and perhaps are more appropriate predictors for adult preda-
tors (e.g., swordfish; Scales et al., 2018). Some fisher
responses pertained to optimal fishing practices broadly, not
just for targeting hammerheads. For example, a few respon-
dents explained that dark and turbid water obscures their
nets, promoting catch of many species. Nevertheless, these
results show that both juvenile hammerheads and fishers
have a distinct niche separate from the background environ-
ment, even when fishers may be fishing by trial and error or
sharing information.

In particular, the spatial and temporal variability of this
catch vulnerability niche has implications for the 2016 ham-
merhead fishing ban. The ban may not adequately protect
juvenile hammerhead sharks near northern ports operating
later in the season. Anomalous oceanographic years may
also result in greater vulnerability outside of the closed sea-
son (Hazen et al., 2018; Oliver et al., 2018). Further study of
the avenues for dynamic approaches and incorporating fish-
ers' knowledge and perspectives may be a productive path-
way toward more effective management. Similarly, better
understanding of smooth hammerhead population dynamics
and ontogenetic niche separation might help ensure that
management measures protect appropriate life stages
(Kinney & Simpfendorfer, 2009).

From an epistemological standpoint, where the two
methods diverge may highlight biases in either approach.
The biophysical model leaves the majority of the deviance
unexplained, which may be due to social factors or individ-
ual variability in fishing cues. Because the observer dataset
included several projects with different objectives, observer
coverage for ports is not necessarily representative of the
entire population of fishers. In particular, the observer data-
set has disproportionately fewer records from Máncora than
our interview dataset and from the overall hammerhead fish-
ery, and greater representation of more southern ports. This
bias may explain the overall more northern and warmer pat-
terns from fishers' knowledge than the biophysical model
predictions. Fishers' knowledge may also vary based on age,
experience, port, and other factors, but these were not exam-
ined here. The implementation of the hammerhead fishing
ban in 2016 may have altered fishing behavior, and although
we asked questions specifying conditions before the ban,

respondents tended to speak in recent terms. There was also
potential sampling bias in that we could only talk to fishers
who were in port, so the fishers at sea for the duration of the
interviews may utilize different fishing strategies. However,
as we covered between ~30 and ~50% of drift-gillnet cap-
tains in these ports and reached general convergence in
responses, this bias may be negligible.

Our methods of combining fishers' knowledge and a bio-
physical model could be improved with future research to
elicit the multivariate relationships in fishers' environmental
niche, rather than comparing single variable distillations to
the multivariate model. Yet, the similarity between niche
maps based on temperature and chl-a and model predictions
is encouraging on its own, as many aspects of fishers'
decision-making are complex and not easily quantified. Fur-
ther work integrating fishers' knowledge and biophysical
models would be particularly useful for predicting condi-
tions under climate change and extreme climatic events
including El Niño and La Niña. Species distribution models,
as done here, are fit on observed environmental conditions
and may not hold up to novel conditions as the environment
changes (Franklin, 2010; Guisan & Thuiller, 2005). Iterative
work that incorporates fishers' understanding and percep-
tions of these changing relationships to existing distribution
models may be useful for updating them for changing condi-
tions. Some respondents also reflected that they have had to
adapt their knowledge to novel conditions; the methods they
previously used no longer apply because there are too few
fish or because the environment has changed. This points to
the urgency of iterative work that further applies fishers'
knowledge in what Bélisle et al. (2018) terms the instrumen-
tal, or empowering use: knowledge sharing platforms for sci-
entific study may also be a valuable means of sharing
knowledge among generations of fishers.

This study points to the utility of integrating local knowl-
edge and biophysical modeling for conservation and man-
agement of the hammerhead shark fishery in Peru. It also
shows promise for other data-poor fisheries where spatially
explicit data is limited, absent, or difficult to obtain. Inter-
viewing fishers or other resource users may provide suffi-
cient information for prioritizing research and implementing
conservation planning in data-poor systems. In addition,
fishers' knowledge may prove useful as a component of
ensemble modeling efforts. These findings may encourage
use the of fishers' knowledge in Peru and elsewhere to
inform conservation decision-making for data-poor fisheries.
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